skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wolf, Amelia_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plants adjust their allocation to different organs based on nutrient supply. In some plant species, symbioses with nitrogen‐fixing bacteria that live in root nodules provide an alternate pathway for nitrogen acquisition. Does access to nitrogen‐fixing bacteria modify plants' biomass allocation? We hypothesized that access to nitrogen‐fixing bacteria would have the same effect on allocation to aboveground versus belowground tissues as access to plentiful soil nitrogen. To test this hypothesis and related hypotheses about allocation to stems versus leaves and roots versus nodules, we conducted experiments with 15 species of nitrogen‐fixing plants in two separate greenhouses. In each, we grew seedlings with and without access to symbiotic bacteria across a wide gradient of soil nitrogen supply. As is common, uninoculated plants allocated relatively less biomass belowground when they had more soil nitrogen. As we hypothesized, nitrogen fixation had a similar effect as the highest level of fertilization on allocation aboveground versus belowground. Both nitrogen fixation and high fertilization led to ~10% less biomass allocated belowground (~10% more aboveground) than the uninoculated, lowest fertilization treatment. Fertilization reduced allocation to nodules relative to roots. The responses for allocation of aboveground tissues to leaves versus stems were not as consistent across greenhouses or species as the other allocation trends, though more nitrogen fixation consistently led to relatively more allocation to leaves when soil nitrogen supply was low. Synthesis: Our results suggest that symbiotic nitrogen fixation causes seedlings to allocate relatively less biomass belowground, with potential implications for competition and carbon storage in early forest development. 
    more » « less
  2. Abstract Forbs (“wildflowers”) are important contributors to grassland biodiversity but are vulnerable to environmental changes. In a factorial experiment at 94 sites on 6 continents, we test the global generality of several broad predictions: (1) Forb cover and richness decline under nutrient enrichment, particularly nitrogen enrichment. (2) Forb cover and richness increase under herbivory by large mammals. (3) Forb richness and cover are less affected by nutrient enrichment and herbivory in more arid climates, because water limitation reduces the impacts of competition with grasses. (4) Forb families will respond differently to nutrient enrichment and mammalian herbivory due to differences in nutrient requirements. We find strong evidence for the first, partial support for the second, no support for the third, and support for the fourth prediction. Our results underscore that anthropogenic nitrogen addition is a major threat to grassland forbs, but grazing under high herbivore intensity can offset these nutrient effects. 
    more » « less
  3. Abstract Climate models predict increases in the frequency and intensity of extreme‐weather events. The impacts of these events may be modulated by biotic agents in unpredictable ways, yet few experiments cover sufficient spatiotemporal scales to measure the interactive effects of multiple extreme events.We used 15 years of a 28‐year experiment spanning several significant droughts to investigate how rainfall, large herbivores, and soil‐engineering termites affect understorey vegetation in a semi‐arid savanna.Herbivory was the dominant influence on community structure—decreasing cover, increasing species richness, and favouring occurrence of annuals relative to perennials—but these effects were contingent on rainfall and termitaria in non‐additive (hence unpredictable) ways.A separate experiment showed that resource enrichment, mimicking the effects of termitaria, does not straightforwardly compensate for top‐down effects of herbivory.Synthesis. Our study highlights the potency of top‐down forcing in African savannas. It suggests impressive robustness to drought and underscores the value of multi‐decadal experiments for studying interactions among multiple drivers of ecosystem dynamics. 
    more » « less